ultimately results in growth promotion and improved stress management of the host plant

The UCMB5113 strain seems to have high capacity to produce different kinds of antibiotics and also secrete a large number of enzymes to improve nutrient acquisition in the rhizosphere. This strain also seems to have potential for production of hormones and volatile compounds that support plant growth and thereby improve plant roots and biomass improving plant quality as a colonization partner and at the same time also increase surface area for colonization and the nutrient resource for the bacteria. UCMB5113 seems able to use a wide range of sugars and other organic compounds that could be present in root exudates. In return the bacteria antagonize detrimental soil microorganisms and strengthen plants improving their nutrient and stress handling capabilities. The ability of UCMB5113 to quench reactive oxygen species should be beneficial for the plant to decrease stress damage. The annotation of UCMB5113 from this study will pave way in elucidating the mechanism involved in plant-bacterial interation. Comparison with other related B. amyloliquefaciens genomes that differ in their capability of plant colonization, growth promotion and stress tolerance provides an excellent basis for in silico predictions of gene candidates and regulatory factors that are involved in these processes. We are currently searching for plant genotypes that vary in the interaction with Bacillus strains as a basis to pinpoint plant genes important for the interactions. Deciphering of the molecular determinants for these processes open up possibilities to identify even more efficient Bacillus strains, engineer improved strains, and optimize conditions that favour interaction and colonization to support durable crop production. In response to deprivation of combined nitrogen, some filamentous cyanobacteria produce cells called heterocysts that are specialized in the fixation of N2. Heterocyst differentiation involves drastic changes in gene expression that are coordinated by two DNA-binding factors, the global regulator NtcA and the development-specific factor HetR. The distribution of heterocysts in the diazotrophic filaments of cyanobacteria represents a simple and old example of developmental patterns in the living world. In strains of the genera Anabaena and Nostoc the pattern consists of long CYT387 linear chains of cells with heterocysts separated by ca. 10 vegetative cells. Several gene products that influence the pattern of heterocyst distribution have been identified.