Acting as a chaperone molecule allowing a fast and prompt interaction

This model would explain the shift observed between association kinetics of GD3 to CLIPR-59 and b-Tubulin, as revealed by FRET analyses. Our results support the view that CLIPR-59 is involved in intracellular trafficking, CC-223 acting as a chaperone molecule allowing a fast and prompt interaction between GD3 and tubulin, once apoptosis has been triggered by CD95/Fas. In particular, findings of the experiments with 2-Bromopalmitate suggest that palmitoylation of CLIPR59 plays a key role in the overall process of GD3/tubulin interaction. Moreover, the key role of CLIPR-59 in this dynamic process is clarified by the observation that silencing CLIPR-59 by siRNA resulted in a delayed GD3-b-tubulin association and, consequently, a delayed apoptosis execution, probably via an inhibited spreading of GD3 towards mitochondria. However, we cannot exclude the possibility that other, still unidentified, molecules may drive GD3 traffic. In particular, we demonstrated that ezrin, a cytoskeletal protein, may directly interact with GD3 in uropods of lymphoblastoid CEM cells during cell apoptosis triggered by CD95/Fas. Furthermore, on the basis of literature and according to, we can hypothesize that the interaction of CLIPR-59 with Akt could play a role in the cascade of events leading to the observed significant delay of apoptotic execution. In fact, since Akt activation is known to inhibit apoptosis, we cannot rule out the possibility that affecting CLIPR59 function could impair signaling through lipid rafts, which results in Akt inactivation and cell death. Taken together, our findings bolster the role played by lipid rafts in the apoptotic program and their role in the preparatory homework for cell suicide apoptosis introducing a new actor in the process: the CLIPR-59 microtubule binding protein and its chaperone activity. In developing vertebrates, distinct types of fast and slow myofibers form during GS-7340 embryonic and fetal development. One marker for this myofiber diversity is differential expression of fast and slow isoforms of myosin heavy chain.