Gluconate is able to be metabolized for the production of fermentation along with a small amount of lactate

About 113 mM Bortezomib Abmole Metabotropic glutamate receptor 3 is involved in B-cell-related tumor apoptosis ethanol and 46.3 mM of acetate were produced from 88.5 mM of gluconate. The stoichiometry of ethanol and acetic acid produced from gluconate follows Equation 1. Ethanol yield reached 85% of the theoretical yield, while acetate reached 105% of the theoretical yield. The gluconate was metabolized faster than glucose. Since one mole of glucose and one mole of gluconate will be generated from cellobionate hydrolysis, we also studied the glucose and gluconate co-utilization by E coli. KO11. Glucose and gluconate co-fermentation was conducted starting with about 100 mM of glucose and 100 mM of gluconate. It was found that glucose and gluconate were utilized simultaneously. Ethanol and acetate were the two main products and the amounts produced follow the stoichiometry of equation 2. Produced ethanol and acetate reached about 80.7% and 99.6% of the theoretical yields, respectively. Gluconate was, again, found to be utilized faster than glucose. E. coli was found to be able to Abmole CUDC305 metabolize gluconate aerobically. According to our knowledge, our study is the first to report that gluconate is able to be metabolized for the production of fermentation products by E. coli under anaerobic conditions. Gluconate seems to be an excellent substrate for fermentation. It was utilized faster than glucose when they were used separately or in a co-culture. The same trend was found in E. coli JM 101 when glucose and gluconate were used as the carbon source in an aerobic culture. The reason why gluconate is utilized faster than glucose is still to be elucidated. It is likely due to the different efficiency of their transporters and glucose and gluconate are transported by different transporters in E. coli. Glucose and gluconate were also found to be utilized by E. coli KO 11 simultaneously when both of them were supplied as the carbon source, which indicated that the catabolite repression effect of glucose on gluconate was not obvious. The proposed new route represents a substantial different route for fuels and chemicals production from cellulosic biomass. Sugar aldonates were produced as the reactive intermediates for the subsequent fermentation to fuels and chemicals. Since sugar aldonates are more reduced than glucose, a small amount of acetate has to be produced along with glucose, which led to lower yield of ethanol. However, the loss due to the production of acetate is relative small. Taking the production of cellobionic acid as an example, the yield of ethanol from cellobionic acid is about 87.5% of that from glucose on per glucose equivalent basis and the ratio of acetate produced verses ethanol is one to seven.